

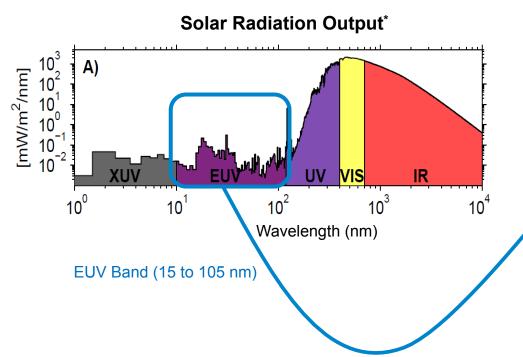
Air Force Research Laboratory

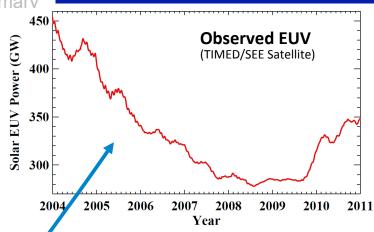
Integrity ★ Service ★ Excellence

Solar Input for Ionospheric/Thermospheric modeling

CCMC 25 April 2018

Carl J. Henney
AFRL/Space Vehicles Directorate, Kirtland AFB, NM




solar indices

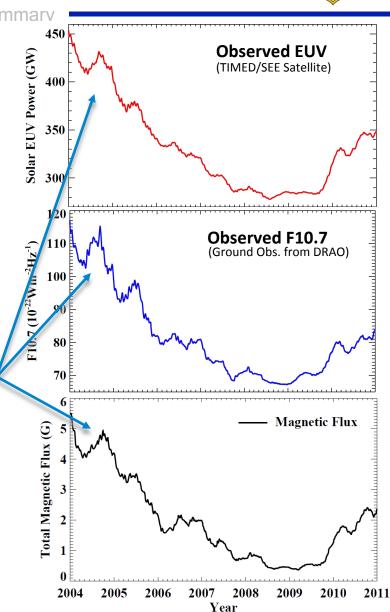
Intro | ADAPT & SIFT | Summarv

 Solar extreme ultraviolet (EUV) radiation is absorbed in the Earth's upper atmosphere and drives ionization & heating

Thermospheric and lonospheric models need an estimation of EUV...

...however, EUV is not observable from ground.

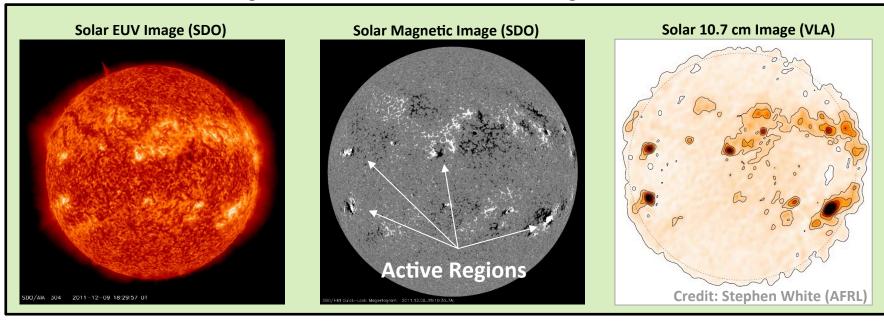
^{*}Figure from: Ermolli et al. 2013, Atmos. Chem. Phys., 13, 3945 TIMED/SEE – NASA Satellite (2002 to present)



solar indices

Intro | ADAPT & SIFT | Summarv

- Solar extreme ultraviolet (EUV) radiation is absorbed in the Earth's upper atmosphere and drives ionization & heating
- Several solar indices have been used as proxies for EUV for periods without satellite measurements, e.g., the solar radio flux at 10.7 cm (F_{10.7}, referred to as "F10.7")
- The F10.7 data is extremely well calibrated and reliable; daily observations since 1947
- The EUV & F10.7 time series agree well since both signals are modulated from additional heating provided from solar magnetic fields



F10.7, EUV, and solar magnetic fields

Intro | ADAPT & SIFT | Summary

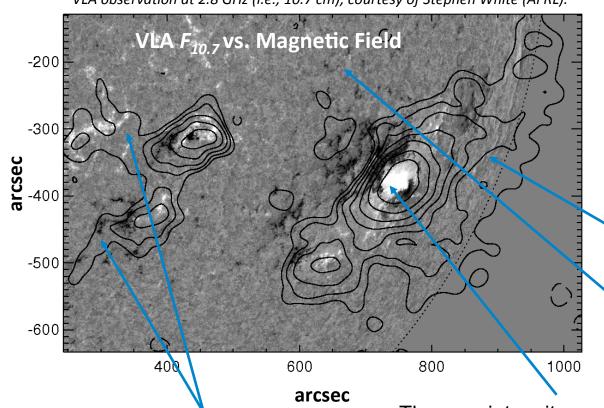
EUV, Magnetic, and 10.7 cm Full-Disk Images of the Sun

- EUV & radio 10.7 cm signal sources align with magnetic active regions
- Integrated comparison first done by Parker et al. 1998, Solar Physics, 177, 229
 - for ADAPT development, full-disk indices provide feedback/validation

SIFT = Solar Indices Forecasting Tool

SDO = NASA's Solar Dynamics Observatory spacecraft

VLA = Very Large Array; Socorro, NM



solar F_{10.7} & magnetic field

Intro | ADAPT & SIFT | Summary

VLA observation at 2.8 GHz (i.e., 10.7 cm); courtesy of Stephen White (AFRL).

Very Large Array (VLA); Socorro, NM.

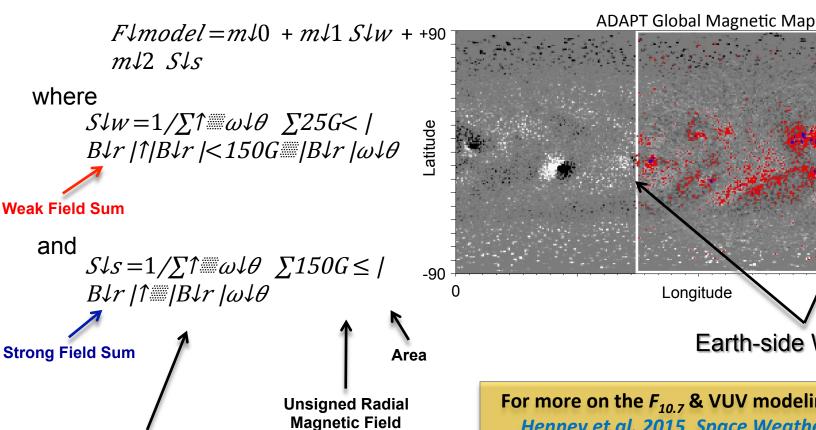
Contours illustrate radio flux intensity at 10.7 cm

Background image is a magnetogram from SDO/HMI

Weak magnetic fields also associated with radio signal

The max intensity contour clearly peaks with strong magnetic field

For more discussion on $F_{10.7}$ sources, see: Schonfeld et al. 2015, ApJ, 88, 29



SIFT F_{10.7} & VUV Empirical Models

Intro | ADAPT & SIFT | Summary

The SIFT* F10.7 & VUV empirical models, based on Henney et al. 2012 & Henney et al. 2015, use the near-side magnetic field estimates from future ADAPT maps:

360 Earth-side Window

For more on the $F_{10.7}$ & VUV modeling, see:

Henney et al. 2015, Space Weather, 13

Total Window Area

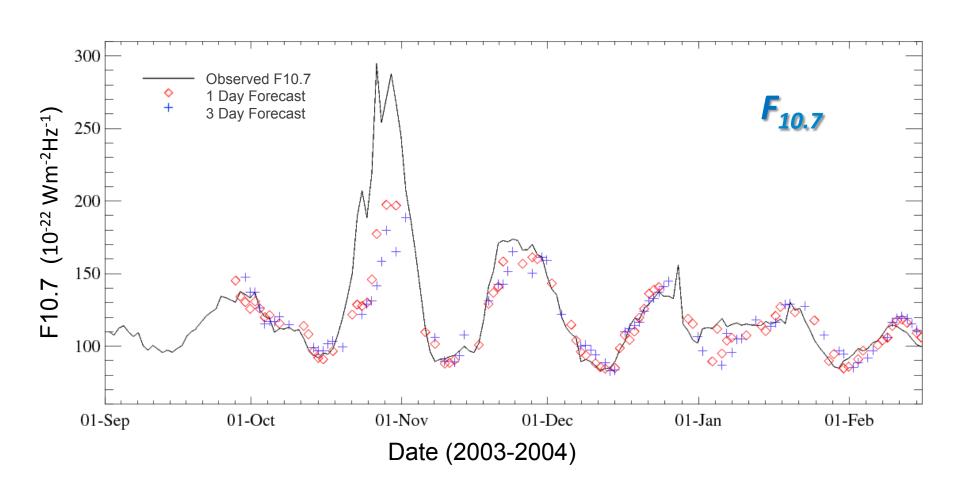
Modeling XUV, EUV, & FUV

Intro | ADAPT & SIFT | Summary

Thermospheric models typically divide the VUV spectral regions of interest into 37 bands within the **XUV/EUV/FUV** intervals, where XUV is 0.1-10 nm, EUV is 10-121 nm, and FUV is 121-200 nm [Solomon and Qian, 2005]:

#	Wavelength	#	Wavelength	#	Wavelength	#	Wavelength
1	0.1-0.4nm	11	54.0-65.0nm	21	98.7-102.7nm	31	140.0-145.0nm
2	0.4-0.8nm	12	65.0-79.8nm (low)	22	102.7-105.0nm	32	145.0-150.0nm
3	0.8-1.8nm	13	65.0-79.8nm (high)	23	105.0-110.0nm	33	150.0-155.0nm
4	1.8-3.2nm	14	79.8-91.3nm (low)	24	110.0-115.0nm	34	155.0-160.0nm
5	3.2-7.0nm	15	79.8-91.3nm (mid)	25	115.0-120.0nm	35	160.0-165.0nm
6	7.0-15.5nm	16	79.8-91.3nm (high)	26	121.6nm Lyman-α	36	165.0-170.0nm
7	15.5-22.4nm	17	91.3-97.5nm (low)	27	120.0-125.0nm	37	170.0-175.0nm
8	22.4-29.0nm	18	91.3-97.5nm (mid)	28	125.0-130.0nm		
9	29.0-32.0nm	19	91.3-97.5nm (high)	29	130.0-135.0nm		
10	32.0-54.0nm	20	97.5-98.7nm	30	135.0-140.0nm		

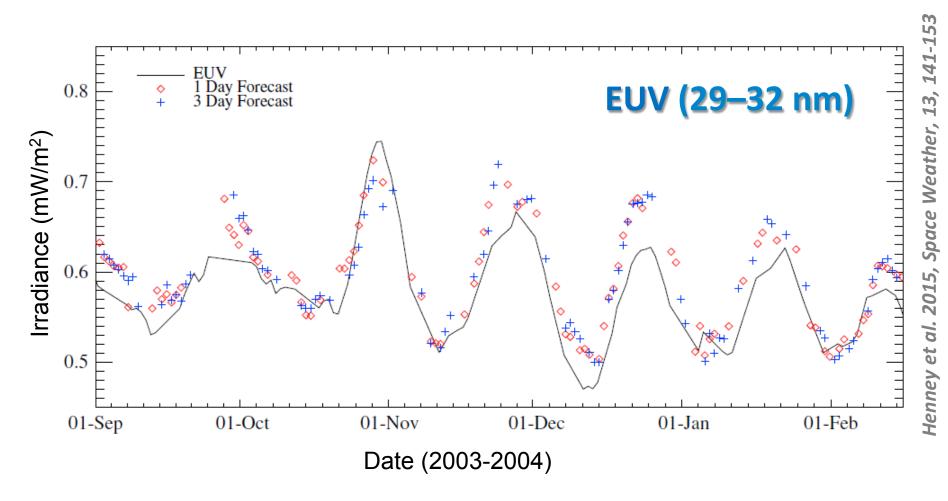
• For this study, we used solar irradiances measured by the Solar EUV Experiment (SEE) on NASA's TIMED mission [Woods et al. 2002], which has been operating since early 2002.



ADAPT/SIFT Forecasting: F10.7

Intro | ADAPT & SIFT | Summary

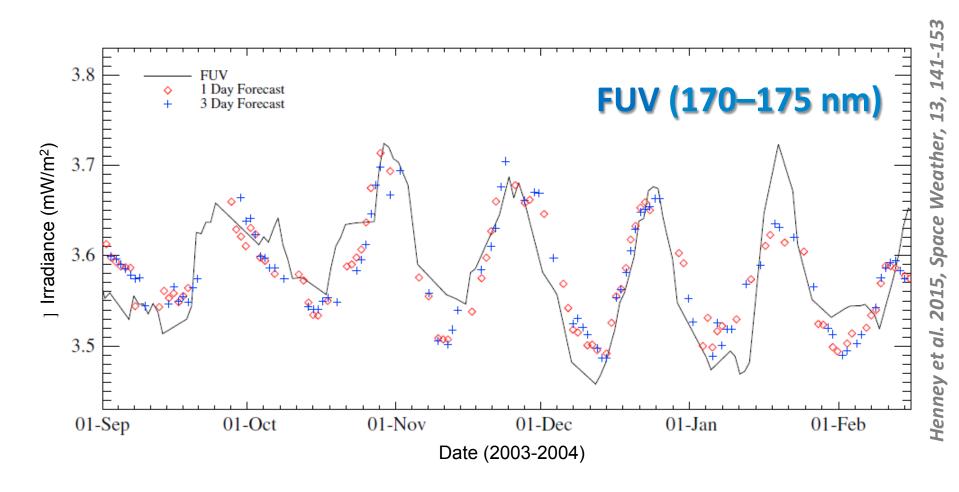
Observed solar radio flux at 10.7 cm from DRAO, Canada



ADAPT/SIFT Forecasting: EUV

Intro | ADAPT & SIFT | Summary

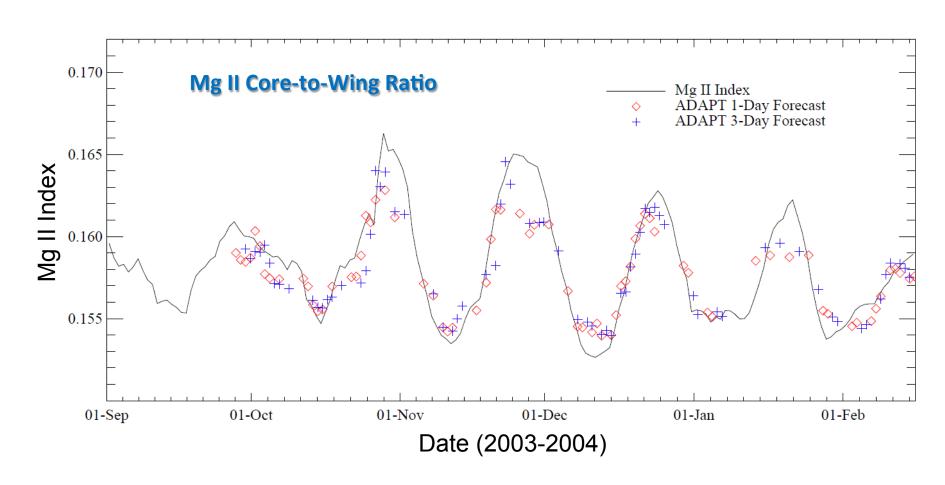
• Observed solar irradiance measured by the Solar EUV Experiment (SEE) on NASA's TIMED mission [Woods et al. 2002]



ADAPT/SIFT Forecasting: FUV

Intro | ADAPT & SIFT | Summary

• Observed solar irradiance measured by the Solar EUV Experiment (SEE) on NASA's TIMED mission [Woods et al. 2002]



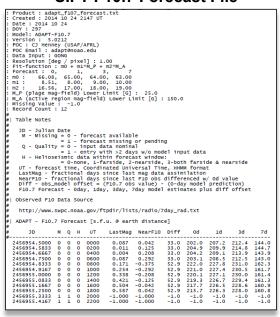
ADAPT/SIFT Forecasting: Mg II Index

Intro | ADAPT & SIFT | Summary

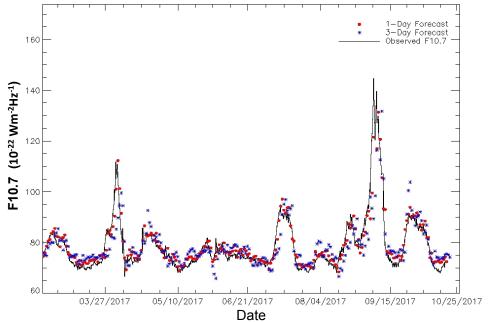
 Mg II Index from GOME/SCIAMACHY (via Mark Weber; Composite V5)

Summary:

ADAPT/SIFT predictions online



Intro | ADAPT & SIFT | Summary


ADAPT Maps and SIFT Forecasts are now online:

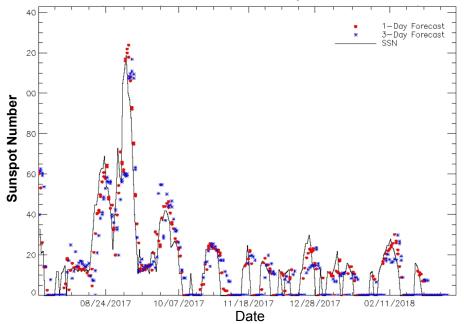
- ADAPT runs 24/7 in a prototype mode at the National Solar Observatory (NSO) generating global maps every 2 hours
- SIFT utilizes the ADAPT maps in near real-time, providing 1, 3, and 7 day advance forecast values of F10.7, SSN, & Mg II core-to-wing

SIFT F10.7 Forecast File

Real-time F10.7 Comparison

Summary:

ADAPT/SIFT predictions online


Intro | ADAPT & SIFT | Summary

ADAPT Maps and SIFT Forecasts are now online:

- ADAPT runs 24/7 in a prototype mode at the National Solar Observatory (NSO) generating global maps every 2 hours
- SIFT utilizes the ADAPT maps in near real-time, providing 1, 3, and 7 day advance forecast values of F10.7, SSN, & Mg II core-to-wing

SIFT SSN Forecast File

Real-time SSN Comparison

Links & References

- Near real-time ADAPT maps at: ftp://gong2.nso.edu/adapt/maps
- And, $F_{10.7}$, Mg II, and SSN forecasts at: ftp://gong2.nso.edu/adapt/sift
- Related References:

Forecasting Solar Extreme and Far Ultraviolet Irradiance

Henney, Hock, Schooley, Toussaint, White, Arge 2015,
Space Weather, 13, 141-153
& Space Weather Quarterly, 12, 19-31

Data Assimilation in the ADAPT Photospheric Flux Transport Model

Hickmann, Godinez, Henney, Arge 2015, Solar Physics, 209, 1105-1118

<u>Acknowledgements</u>

ADAPT is supported by the AFRL, AFOSR, and NASA, and this work utilizes data produced collaboratively between AFRL/ADAPT and NSO/NISP.